References

Çetinkaya, B., Gümrükçü, I. \& Lappert, M. F. (1980). J. Am. Chem. Soc. 102, 2088-2098.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Huffman, J. C., Geerts, R. L. \& Caulton, K. G. (1984). J. Cryst. Spectrosc. Res. 14, 541-547.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Power, P. P., Hvoslev, J., Hope, H. \& Murray, D. B. (1983). J. Chem. Soc. Chem. Commun. pp. 1438-1442.
Schumann, H., Müller, J., Bruncks, N., Lauke, H., Pickardt, J., Schwarz, H. \& Eckart, K. (1984). Organometallics, 3, 69-74.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

Acta Cryst. (1991). C47, 2651-2653

Structure of $\mathrm{pzB}(\mathrm{pz})_{\mathbf{3}} \mathbf{M o}(\mathrm{CO})_{\mathbf{2}}\left(\boldsymbol{\eta}^{\mathbf{2}}-\mathrm{OCNMe}_{\mathbf{2}}\right)$

By George Ferguson* and Branko Kaitner \dagger
Department of Chemistry \& Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2 W1
and T. Desmond, Fergus J. Lalor* and Brian O’Sullivan
Department of Chemistry, University College, Cork, Ireland

(Received 1 February 1991; accepted 11 June 1991)

Abstract

Dicarbonyl(dimethylaminocarbonyl)(1pyrazolyl)tris(pyrazolylborane)molybdenum, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BMoN}_{9} \mathrm{O}_{3}, M_{r}=503 \cdot 14$, monoclinic, $C 2 / c, a$ $=24.568$ (3),$\quad b=9.089$ (2),$\quad c=18.616$ (2) $\AA, \quad \beta=$ 95.03 (1) ${ }^{\circ}, V=4141$ (2) $\AA^{3}, Z=8, D_{x}=1.61 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=6.6 \mathrm{~cm}^{-1}, \quad F(000)=$ 2032, $T=294 \mathrm{~K}$, final $R=0.029$ for 2967 unique observed reflections. Crystals of the title compound $\mathrm{pzB}(\mathrm{pz})_{3} \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{2}-\mathrm{OCNMe}_{2}\right)$ (I) (pz=1-pyrazolyl) were isolated in low yield from the reaction of an excess of diethylamine with $\left[\mathrm{pzB}(\mathrm{pz})_{3}(\mathrm{CO})_{2^{-}}\right.$ $\left.\operatorname{Mo}\left(\eta^{2}-\mathrm{SMeCNMe}_{2}\right)\right] \mathrm{BF}_{4}$. An attempt to achieve a rational synthesis of the complex via the reaction of $\mathrm{Me}_{2} \mathrm{NCOCl}$ with $\left[\mathrm{pzB}(\mathrm{pz})_{3} \mathrm{Mo}(\mathrm{CO})_{3}\right]^{-}$was not successful. Compound (I) is isostructural (but not isomorphous) with $\mathrm{pzB}(\mathrm{pz})_{3} \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)$ (II) [Desmond, Lalor, O'Sullivan \& Ferguson (1990). J. Organomet. Chem. 381, C33-C37] with the sulfur atom replaced by an oxygen in (I). As in (II) the $\eta^{2}-\mathrm{OCN}\left(\mathrm{CH}_{3}\right)_{2}$ is situated between two carbonyl ligands and one pyrazolyl ring, but close to the C5-O5 group; the orientation of the dihapto ligand is specified by two torsion angles $\mathrm{N} 21-\mathrm{Mo}-\mathrm{Ol}-$ $\mathrm{Cl}\left[-75.7(2)^{\circ}\right]$ and $\mathrm{C} 5-\mathrm{Mo}-\mathrm{Ol}-\mathrm{Cl}\left[33.9(2)^{\circ}\right]$; the corresponding values in (II) are -74.9 (2) and 42.3 (2) ${ }^{\circ}$, respectively. The conformation of the two molecules differs only in the orientation of the uncomplexed pyrazolyl ring (N41-C45), presumably

[^0]due to differences in crystal packing. The coordination about the Mo atom is distorted octahedral with the tridentate ligand [Mo-N11 2.181 (3), Mo-N21 $2 \cdot 294$ (3), Mo-N31 2.218 (3) \AA] and two carbonyl groups [Mo-C4 1.933 (4), Mo-C5 1.970 (3) Á] occupying five sites and the $\eta^{2}-\mathrm{OCN}\left(\mathrm{CH}_{3}\right)_{2}$ ligand in the sixth position [Mo-Ol 2.207 (2), Mo-Cl $2.050(3) \AA]$. The packing is due mainly to van der Waals interactions and all intermolecular contacts agree with those predicted from radii-sum rules.

Experimental. Three-dimensional intensity data were collected on an Enraf-Nonius CAD-4 diffractometer using a dark-red needle-shaped crystal $0.18 \times 0.11 \times$ 0.38 mm and graphite-monochromated Mo $K \alpha$ radiation; lattice parameters were refined using 25 reflections in the range $8<\theta<20^{\circ}$; reflections were measured using $\omega / 2 \theta$ scan ($2<2 \theta<54^{\circ}$); ω-scan width $(0 \cdot 6+0 \cdot 35 \tan \theta)^{\circ}$; range of $h k l: h 0$ to $31, k 0$ to $8, l-17$ to $17 ; 4928$ reflections were measured of which only 3026 had $I \geq 3 \sigma I$ and were labelled observed. Three reflections ($10,0, \overline{4}, 408$ and 134) were measured periodically throughout the data collection and showed less than 2% variation. After averaging equivalent reflections ($R_{\text {int }}=0.009$), 2967 reflections were retained and used in the analysis. Lorentz, polarization and absorption corrections [Gaussian integration; Coppens, Leiserowitz \& Rabinovich (1965)] were applied to the data; range of transmission coefficients 0.890 to 0.934 . Structure was solved by the heavy-atom method; a Fourier map calculated on the basis of the position of the Mo atom revealed the entire molecule. Structural

Table 1. Positional and thermal parameters with their e.s.d's
$B_{\mathrm{eq}}=(4 / 3)\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)\right.$ $+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)]$.

	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
Mo	0.14012 (1)	0.19838 (3)	0.12740 (1)	$2 \cdot 299$ (4)
C1	0.2087 (1)	0.1643 (4)	0.1963 (2)	$2 \cdot 69$ (6)
O1	0.18188 (9)	0.2433 (3)	$0 \cdot 2350$ (1)	$3 \cdot 21$ (5)
N1	0.2587 (1)	0.1139 (3)	0.2129 (2)	3-20 (6)
C2	0.2886 (2)	0.1551 (5)	$0 \cdot 2810$ (2)	4.8 (1)
C3	0.2884 (2)	0.0322 (4)	0.1620 (2)	3-88(8)
C4	0.0904 (1)	0.0708 (4)	0.1730 (2)	3.39 (7)
04	0.0621 (1)	-0.0112 (3)	0.1999 (2)	5.66 (7)
C5	0.1594 (1)	-0.0010 (4)	0.0967 (2)	2.95 (7)
O5	0.1653 (1)	-0.1230 (3)	0.0826 (2)	4.43 (6)
N11	0.0985 (1)	0.2151 (3)	0.0193 (1)	2.80 (5)
N12	0.0942 (1)	$0 \cdot 3478$ (3)	-0.0148 (1)	2.42 (5)
C13	0.0724 (1)	0.3281 (4)	-0.0829 (2)	3.35 (7)
C14	0.0612 (2)	0.1807 (4)	-0.0927 (2)	4.18 (8)
C15	0.0779 (2)	$0 \cdot 1158$ (4)	-0.0280 (2)	3.73 (8)
N21	$0 \cdot 1965$ (1)	0.3642 (3)	0.0780 (2)	2.77 (5)
N22	0-17728 (9)	0.4824 (3)	0.0383 (1)	2.39 (5)
C23	0.2191 (1)	0.5711 (4)	0.0247 (2)	2.84 (6)
C24	0.2665 (1)	0.5105 (4)	0.0556 (2)	3.44 (7)
C25	0.2508 (1)	0.3831 (4)	0.0872 (2)	3.35 (7)
N31	0.0924 (1)	0.4016 (3)	0.1420 (1)	$2 \cdot 68$ (5)
N32	0.0895 (1)	0.5143 (3)	0.0932 (1)	2.39 (5)
C33	0.0706 (1)	0.6349 (4)	$0 \cdot 1248$ (2)	2.95 (6)
C34	0.0559 (1)	0.6006 (4)	$0 \cdot 1938$ (2)	$3 \cdot 43$ (7)
C35	0.0734 (1)	0.4550 (4)	$0 \cdot 2019$ (2)	$3 \cdot 28$ (7)
N41	0.0973 (1)	0.6196 (3)	-0.0293 (1)	$2 \cdot 61$ (5)
N42	0.1303 (1)	0.6724 (3)	-0.0789 (1)	3.12 (6)
C43	0.0984 (2)	0.7577 (4)	-0.1224 (2)	$3 \cdot 42$ (7)
C44	0.0452 (2)	0.7600 (4)	-0.1034 (2)	3.59 (7)
C45	0.0458 (1)	0.6713 (4)	-0.0449 (2)	3.38 (7)
B	$0 \cdot 1152$ (1)	0.4950 (4)	0.0210 (2)	$2 \cdot 36$ (6)

parameters for the non-H atoms were refined using full-matrix least-squares methods with anisotropic thermal parameters. All H atoms were clearly visible in a difference Fourier map computed at an intermediate stage of the refinement; they were positioned geometrically ($\mathrm{C}-\mathrm{H} 0.95 \AA$) and included as riding atoms with $B_{\text {iso }}=4.0 \AA^{2}$ (but not refined) in subsequent refinement calculations. Refinement of the structure, with and without absorption correction, yielded the same R factors and dimensions which were the same to within 1σ. At convergence, the residuals were $R=0.029$ and $w R=0.036$ for the 2967 observations; the weighting scheme used was w $=1 /\left[\sigma^{2} F_{o}+0.05 F_{o}^{2}\right] ; S=1 \cdot 13 ;(\Delta / \sigma)_{\max }<0.02$ for all refined atoms in last cycle; density in final difference map was $\pm 0.37 \mathrm{e} \AA^{-3}$; scattering factors were from International Tables for X-ray Crystallography (1974, Vol. IV). Programs used were $\operatorname{NRCVAX}-\mathrm{PC}$ version (Gabe, Le Page, Charland, Lee \& White, 1989), ORTEPII (Johnson, 1976) and SDP-Plus (B. A. Frenz \& Associates, Inc., 1984). Final fractional coordinates are in Table 1* and details of molecular

[^1]Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$

Mo	Cl		$2 \cdot 050$ (3)	N21	N22		$1 \cdot 365$ (4)
Mo	O1		$2 \cdot 207$ (2)	N21	C25		1.341 (4)
Mo	C4		1.933 (4)	N22	C23		1.347 (4)
Mo	C5		1.970 (3)	N22	B		1.536 (4)
Mo	N11		$2 \cdot 181$ (3)	C23	C24		1.368 (4)
Mo	N21		$2 \cdot 294$ (3)	C24	C25		$1 \cdot 369$ (5)
Mo	N31		$2 \cdot 218$ (3)	N31	N32		$1 \cdot 366$ (4)
Cl	O1		1.246 (4)	N31	C35		$1 \cdot 337$ (4)
Cl	N1		1.321 (4)	N32	C33		1.346 (4)
N 1	C2		1.458 (5)	N32	B		1.544 (4)
N1	C3		1.450 (5)	C33	C34		$1 \cdot 370$ (5)
C4	04		$1 \cdot 163$ (5)	C34	C35		$1 \cdot 370$ (5)
C5	O5		$1 \cdot 152$ (4)	N41	C42		$1 \cdot 369$ (4)
N11	N12		$1 \cdot 362$ (4)	N41	C45		$1 \cdot 356$ (4)
N11	C15		1.330 (4)	N41	B		1.509 (4)
N12	C13		1.345 (4)	N42	C43		$1 \cdot 328$ (4)
N12	B		1.562 (4)	C43	C44		$1 \cdot 383$ (6)
C13	C14		1.377 (5)	C44	C45		$1 \cdot 355$ (5)
C14	C15		1.371 (5)				
Cl	Mo	Ol	33.8 (1)	C13	N12	B	127.2 (3)
Cl	Mo	C4	98.7 (1)	N12	Cl 3	C14	108.3 (3)
Cl	Mo	C5	80.6 (1)	C13	C14	C15	$105 \cdot 1$ (3)
Cl	Mo	N11	151.8 (1)	N11	C15	C14	$110 \cdot 9$ (3)
C1	Mo	N21	81.8 (1)	Mo	N21	N22	122.8 (2)
Cl	Mo	N31	117.6 (1)	Mo	N21	C25	131.5 (2)
Ol	Mo	C4	88.5 (1)	N22	N21	C25	$105 \cdot 2$ (3)
O1	Mo	C5	109.2 (1)	N21	N22	C23	109.8 (2)
01	Mo	N11	$165 \cdot 3$ (1)	N21	N22	B	117.6 (2)
O1	Mo	N21	89.60 (9)	C23	N22	B	132.5 (3)
01	Mo	N31	86.78 (9)	N22	C23	C24	$108 \cdot 3$ (3)
C4	Mo	C5	75.7 (2)	C23	C24	C25	$105 \cdot 1$ (3)
C4	Mo	N11	100.6 (1)	N21	C25	C24	111.5 (3)
C4	Mo	N21	$175 \cdot 7$ (1)	Mo	N31	N32	$122 \cdot 7$ (2)
C4	Mo	N31	94.9 (1)	Mo	N31	C35	129.1 (2)
C5	Mo	N11	84.4 (1)	N32	N31	C35	$106 \cdot 3$ (3)
CS	Mo	N21	108.6 (1)	N31	N32	C33	108.6 (3)
C5	Mo	N31	160.9 (1)	N31	N32	B	119.5 (3)
N11	Mo	N21	80.54 (9)	C33	N32	B	131.0 (3)
N11	Mo	N31	81.04 (9)	N32	C33	C34	109.1 (3)
N21	Mo	N31	81.2 (1)	C33	C34	C35	$104 \cdot 9$ (3)
Mo	Cl	Ol	80.0 (2)	N31	C35	C34	111.0 (3)
Mo	Cl	N1	$153 \cdot 5$ (3)	N42	N41	C45	109.4 (3)
Ol	Cl	N1	$126 \cdot 3$ (3)	N42	N41	B	121.6 (3)
Mo	Ol	Cl	$66 \cdot 2$ (2)	C45	N41	B	127.4 (3)
Cl	N1	C2	$120 \cdot 1$ (3)	N41	N42	C43	$105 \cdot 2$ (3)
Cl	N1	C3	122.4 (3)	N42	C43	C44	111.9 (3)
C2	N1	C3	117.0 (3)	C43	C44	C45	$104 \cdot 7$ (3)
Mo	C4	O4	176.9 (3)	N41	C45	C44	$108 \cdot 8$ (3)
Mo	C5	O5	171.9 (3)	N12	B	N22	108.1 (3)
Mo	N11	N12	$120 \cdot 2$ (2)	N12	B	N32	$108 \cdot 9$ (3)
Mo	N11	C15	$133 \cdot 1$ (2)	N12	B	N41	108.1 (2)
N12	N11	C15	$106 \cdot 4$ (3)	N22	B	N32	$107 \cdot 5$ (2)
N11	N12	C13	$109 \cdot 2$ (3)	N22	B	N41	114.6 (3)
N11	N12	B	123.4 (2)	N32	B	N41	$109 \cdot 6$ (3)

Fig. 1. A view of the $\mathrm{pzB}(\mathrm{pz})_{3} \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{2}-\mathrm{OCNMe}\right)_{2}$ molecule with our numbering scheme. Ellipsoids for non-H atoms are at the 50% level.
dimensions are in Table 2. Fig. 1 shows the molecule and our numbering scheme.

Related literature. The η^{2}-derivatives $\mathrm{HB}\left(\mathrm{Me}_{2} \mathrm{pz}\right)_{3}$ -$\mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{2}-\mathrm{COR}\right)\left(R=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right)$ have been described previously (Desmond Lalor, O'Sullivan, Ferguson, Ruhl \& Parvez, 1983). Curtis, Shiu \& Butler (1986) have described $R \mathrm{Bpz}_{3} \mathrm{Mo}(\mathrm{CO})_{2}-$ $\left(\eta^{2}-\mathrm{CO}^{1}\right)\left(R=\mathrm{H}\right.$ or $\mathrm{pz}, R^{1}=$ alkyl, aryl).

We are indebted to the NSERC Canada for the award of an operating grant (to GF) and a Visiting Professorship (to BK). We are also pleased to acknowledge the award of a Postgraduate Maintenance Grant (to BO'S) from the Department of Education, Irish Republic, and financial support (to

FJL) from Eolas (Irish Republic) via Grant No. SC-Chem-024-088.

References

B. A. Frenz, \& Associates, Inc. (1984). SDP-Plus Structure Determination Package. College Station, Texas, USA.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. B38, 1035-1038.
Curtis, M. D., Shiu, K.-B. \& Butler, W. M. (1986). J. Am. Chem. Soc. 108, 1550-1561.
Desmond T., Lalor, F. J., O’Sullivan, B. \& Ferguson, G. (1990). J. Organomet. Chem. 381, C33-C37.

Desmond, T., Lalor, F. J., O’Sullivan, B., Ferguson, G., Ruhl, B. \& Parvez, M. (1983). J. Chem. Soc. Chem. Commun. pp. 55-56.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-389.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Acta Cryst. (1991). C47, 2653-2654

Structure of catena-Poly\{bis(1,1,1-trifluoro-2,4-pentanedionato- $\left.\kappa^{2} O, O^{\prime}\right)$ copper-$\mu-\left[\left(4,4^{\prime}\right.\right.$-bipyridine)- $\left.\left.\kappa N: \kappa N^{\prime}\right]\right\}$

By Kai-Be Yu
Chengdu Center of Analysis and Determination, Academia Sinica, Chengdu 610015, People's Republic of China
and Shao-Hua Gou,* Xiao-Zeng You and Zheng Xu
Coordination Chemistry Institute, Nanjing University, Nanjing 210008, People's Republic of China

(Received 11 March 1991; accepted 2 July 1991)

Abstract

Cu}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right], \quad M_{r}=525.55\), tetragonal, $P 4_{2} / m, a=8.379$ (1), $c=15.832$ (4) \AA, V $=1111.6$ (4) $\AA^{3}, Z=2, D_{x}=1.57 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71073 \AA, \quad \mu=10.59 \mathrm{~cm}^{-1}, \quad F(000)=530, \quad T=$ $295 \mathrm{~K}, R=0.043, w R=0.043$ for 658 unique observed $\quad[I>1.5 \sigma(I)] \quad$ reflections. $\operatorname{Bis}(1,1,1-$ trifluoropentane-2,4-dionato- O, O^{\prime})copper(II) and 4,4'-bipyridine form a one-dimensional infinite linear structure with molecular ratio 1:1. The coordination geometry around each copper(II) atom is that of an octahedron, where the basal plane is comprised of four O atoms at a distance of 1.968 (3) \AA and the axial positions are occupied by two N atoms at 2.381 (5) \AA. The distance between adjacent copper(II) atoms is 11.850 (4) \AA.

Experimental. The title complex was prepared by addition of $4,4^{\prime}$-bipyridine (0.32 g) in absolute

[^2]0108-2701/91/122653-02\$03.00
ethanol (10 ml) to a solution of bis(1,1,1-tri-fluoropentane-2,4-dionato- O, O^{\prime})copper(II) (1.48 g) in absolute ethanol (40 ml). After the resulting solution was stirred and refluxed for two hours, green crystals were obtained. Yield: 61%. The structure proposed is in agreement with microanalysis. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{CuF}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$: Calc.: C 45.66, H 3.04, N 5.33; Found: C 45.50, H 3.15, N 5.16.

Light-green single crystals were developed from a $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solution of the complex at room temperature. A suitable crystal, dimensions $0.40 \times$ $0.40 \times 0.50 \mathrm{~mm}, R 3 M / E$ diffractometer, graphitemonochromatized Mo $K \alpha$ radiation; cell parameters from 19 reflections in 2θ range $6.86-18.34^{\circ}$; data collected by $\omega-2 \theta$ scans in 2θ range $2-45^{\circ}$. hkl ranges: $h 0-9, k 0-9, l 0-17 ; 914$ measured reflections, 658 unique with $[I>1.5 \sigma(I)], R_{\text {int }}=0.0103$. Corrections made for Lorentz-polarization factors, but not absorption effects. Three standard reflections monitored every 2 h , no significant variation during data collection.
© 1991 International Union of Crystallography

[^0]: * E-mail addresses: GF: GF@xray.chem.uoguelph.ca

 FJL: STCH8002@IRUCCVAX
 \dagger On leave from Faculty of Science, University of Zagreb, Zagreb, Croatia, Yugoslavia.

[^1]: * Lists of calculated hydrogen coordinates, anisotropic thermal parameters, torsion angles, a difference map showing the hydrogens of the uncomplexed pz ring, and observed and calculated structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54337 (38 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.

